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bstract

We consider the linear stability of the interface between two sheared elastic liquids at large Weissenberg number (Wi) with negligible inertia. The
iquids are of Oldroyd-B or UCM type and have matched viscosity. In UCM liquids, Renardy [Y. Renardy, Stability of the interface in two-layer
ouette flow of upper convected Maxwell liquids, J. Non-Newton. Fluid Mech. 28 (1988) 99–115] found a purely elastic instability for short-waves

n the absence of surface tension for which the perturbation flow decays exponentially away from the interface. For UCM liquids at large Wi we
how that this instability persists even though the wavelength is larger than the channel width and the disturbance occupies the entire channel.
urprisingly, the growth rate is not affected by the location of the walls, even though the mode structure is altered. This analysis suggests a
eappraisal of the appropriateness of the short-wave and long-wave classifications for instabilities of viscoelastic liquids in order to accommodate
he additional length scale introduced by fluid velocity and relaxation. The instability persists for Oldroyd-B liquids even as the elastic contribution
o viscosity approaches zero. Surprisingly too, the inclusion of surface tension does not affect the asymptotic growth rate at large wavenumber.
hen more modest values of Wi are considered, we find parameter values for which arbitrarily large surface tension reduces the growth rate but
oes not stabilize the flow; previously proposed mechanisms based on the interface displacement are therefore inadequate to explain the instability.
ecause the instability is locally generated, it appears in other high Wi flows with interfaces, both in channels and in pipes.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Viscoelastic flows are important in a number of industrial
pplications and their instabilities have received considerable
ttention. The elasticity provides a source of energy for insta-
ilities even in the absence of inertia, creating a class of purely
lastic instabilities. Reviews of purely elastic instabilities can
e found in [2,3]. In this paper, we study the stability to distur-
ances with wavenumber k of two inertialess Upper Convected
axwell (UCM) or Oldroyd-B liquids. The liquids undergo

hear in a channel of width L with characteristic velocity U0;
heir viscosities are matched, but their relaxation times differ.

Much of the theoretical investigation of inertialess interfa-

ial instabilities in viscoelastic liquids began with Chen [4] in
he long-wave (wavelength long compared to channel width:

� k−1) limit and with Chen & Joseph and Renardy [1,5] in
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he short-wave (wavelength short compared to channel width:
−1 � L) limit. The physical mechanism behind the long-wave
nstability was provided by Hinch et al. [6]. Related theoretical
ork in both limits was done by Ganpule and Khomami [7–9].
he results were generalized for other liquids by Wilson [10]
nd Wilson and Rallison [11–13].

Inertialess Couette flow of two Newtonian liquids with
atched viscosity is linearly stable, as is the inertialess Couette
ow of a single Oldroyd-B liquid [14,15]. A nonlinear stability
roof for UCM liquids in Poiseuille flow is claimed by [16] who
howed that the flow minimized an energy functional, but recent
ork [17,18] shows that no reasonable energy functional will
ecay monotonically in time for Oldroyd-B or UCM liquids.
his is further confirmed by some numerical simulations [19]
hich find a finite amplitude nonlinear instability of Poiseuille

nd Couette channel flow for Oldroyd-B liquids when the elas-
ic component of viscosity is large compared to the Newtonian

omponent of viscosity.

Because the Couette flow of a single inertialess Oldroyd-B
iquid is linearly stable, the short and long-wave interfacial insta-
ilities must be attributed to the jump in elastic properties at the

mailto:jomiller@lanl.gov
dx.doi.org/10.1016/j.jnnfm.2007.01.009
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∇ ·� = 0, (1)
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nterface. The wavespeed of the long-wave mode relative to the
nterface is found to be much less than the velocity scale defined
y the wavelength and the growth rate, that is, at leading order
he wave remains stationary relative to the interface. This reflects
he fact that the instability can be explained in terms of the nor-

al stress jump which is independent of the sign of the shear rate
6]. In contrast, the short-wave mode travels with a relative speed
omparable to the velocity scale defined by its growth rate and
avelength. The physical mechanism must involve some effect
hich depends on the sign of the shear rate. Some mechanisms
ave been suggested for this instability that depend on inter-
ace displacement [9,20]. We show, however, that at sufficiently
arge Weissenberg number this instability exists even if the inter-
ace is held flat by surface tension, so a different explanation is
eeded.

Renardy [1] considered interfacial instabilities of inertialess
ouette flow of UCM liquids for short-waves: k−1 � L. She

ound that the perturbed flow is localized in a boundary layer
f thickness 1/k near the interface. Consequently short-wave
nstabilities exist provided the walls are sufficiently far from the
nterface. In the large Weissenberg number limit, she found that
he growth rate is a function only of the ratio of the two relaxation
imes. For some ratios the flow is stable. In contrast, at low

eissenberg number, all pairs of relaxation times are unstable.
he two limits involve different mechanisms. This paper focuses
n the large Weissenberg number limit.

Chen and Joseph [5] examined inertialess core-annular flow
f UCM liquids through a pipe without surface tension. They
ound the same short-wave behavior as Renardy because the
urvature of the pipe disappears from the asymptotic equations.
ith surface tension they claim that the flow stabilizes at large

nough k. Our results disagree with this conclusion.
Wilson and Rallison [11] generalized the UCM results to

ldroyd-B liquids, again with k−1 � L. They found that the
ddition of a Newtonian component to the viscosity has a desta-
ilizing effect. In the limit where the Newtonian viscosity is large
ompared to the elastic stress, they found instability whenever
he relaxation times of the two liquids are different. In the pres-
nce of surface tension at large enough k they showed that the
ormal force due to surface tension dominates the elastic normal
orce which suggests that the interface and hence the flow should
e stabilized. However, we show that at large Wi the normal force
alance is irrelevant to the stability.

We consider Couette flow through a channel of width L with
alls moving at a relative velocity of U0. In characterizing the
ifferent classes of interfacial instability it is important to rec-
gnize that for viscoelastic liquids in Couette flow three length
cales enter the problem: the channel width L, the wavelength
f the disturbance k−1, and the relative distance U0τ travelled
y the walls in a relaxation time τ. This final length scale is a
easure of the distance a typical particle travels during a relax-

tion time. Other length scales can be constructed from these
hree. For example liquid particles initially separated by the dis-

ance 2πL/U0τk in the cross-stream (y) direction are separated
y a wavelength in the streamwise (x) direction after a relaxation
ime. We find later that the length scale L/U0τk determines the
hickness of boundary layers in the flow.

F
l

ian Fluid Mech. 143 (2007) 71–87

The previous analyses considered k−1 � L (short-waves) or
−1 � L (long-waves) and implicitly assumed that k−1 � U0τ

or short-waves or k−1 � U0τ for long-waves. This leaves two
ther limits unexplored: L � k−1 � U0τ and U0τ � k−1 �
. In the latter case the Weissenberg number Wi = U0τ/L is

mall and the elastic effects are weak; the analysis of [1,5] for
−1 � U0τ � L applies to this case. This paper focuses on
he unexplored former case for which Wi � 1. In this regime
he wavelength is long compared to the channel width, but
hort compared to the relaxation length scale. This leads to a
ixture of short and long-wave properties, allowing us to use

tandard short-wave techniques, but also to make standard long-
ave assumptions (e.g., the pressure gradient varies only in the

-direction).
The organization of this paper is as follows: In Section 2 we

escribe the governing equations and the unperturbed Couette
ow. In Section 3 we study the large Wi limit of the UCM liquid
nalytically and numerically, and in Section 4 we study the large
i limit of the Oldroyd-B liquid numerically. We then discuss

he effect of surface tension, showing in Section 5 that even for
oderate Wi some flows are not stabilized by arbitrarily large

urface tension. In Section 6 we discuss the physical scalings
f the instability. An additional instability is briefly analyzed in
ection 7. In Section 8 we show that the main instability of this
aper is robust in that it persists for other flow profiles under
ome mild assumptions. Finally, in Section 9 we offer some
oncluding remarks.

. Governing equations

Consider two incompressible Oldroyd-B liquids in steady
ouette flow in a channel of width L as shown in Fig. 1. We
hoose the origin in y to be the location of the unperturbed inter-
ace. The frame of reference is chosen to travel with the interface
elocity. The lower liquid occupies a fraction Δ of the channel;
he walls at y = (1 −Δ)L and y = −ΔL move horizontally
ith velocity (1 −Δ)U0 and −ΔU0 respectively.
The liquids have different relaxation times τ− and τ+ but

he same, constant, shear viscosity μ, as well as the same rela-
ive contributions of elastic and Newtonian components to that
iscosity. Without loss of generality we take τ− ≥ τ+. In the
ig. 1. Two elastic liquids in Couette flow U = U0y/L through a channel. The
iquids differ only in relaxation time τ.
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= −P I + μ

(
2βE + 1 − β

τ
A
)
, (2)

∂t + U · ∇)A − [∇U]T · A − A · [∇U] = 1

τ
(I − A ), (3)

= (∇U) + (∇U)T

2
, (4)

· U = 0. (5)

he stress tensor � depends on an elastic strain A. The shear
iscosityμ, identical for both liquids, is divided into Newtonian
nd elastic parts through the parameter β, 0 ≤ β ≤ 1. The value
f β is also the same for both liquids. When β = 0 we have
pper Convected Maxwell (UCM) liquids, while when β = 1

he liquids are Newtonian. In the absence of a perturbation, the
elocity is U = (U0y/L, 0).

The forces acting on the interface must balance, so

[�]] · N = γκN, (6)

here the notation [[ · ]] denotes the jump in the bracketed quan-
ity across the interface. N is the unit normal pointing into the
pper liquid, γ the coefficient of surface tension and κ = ∇ · N

he curvature of the interface. For the base flow N = (0, 1)T.
In steady flow (∂t + U · ∇)A = 0 so Eq. (3) implies that the

ase elastic stress in each liquid is

± =
(

2(U2
0τ

2±/L2) + 1 U0τ±/L
U0τ±/L 1

)
.

his completes the definition of the base flow.
The linear perturbation equations for stability of modes pro-

ortional to exp(ikx− iωt) are derived in Appendix A and agree
ith those obtained in [11] with the addition of surface ten-

ion. We introduce a streamfunctionψ for the perturbation flow,
nd use lowercase letters to denote perturbations to their upper-
ase counterparts. The growth of the stresses is regulated by
= −iω + ikU + 1/τ which incorporates the complex growth

f the instability, advection by the base flow, and relaxation. We
ook for modes for which the streamfunctionψ is not identically
ero (cf., [17,18] which show the existence of stress perturba-
ions which do not affect the velocity field). The appropriate
escaling of these equations in the Wi � 1 limit differs from
arlier treatments [1,5] and is described below.

In Appendix B, we derive general analytic solutions to the
on-dimensionalized linear perturbation equations of Section
.1, but these are found to be useful only in limiting cases.
or more general parameter values we use numerical methods
escribed in Appendix C.

.1. Non-dimensionalization

We use asterisks to denote non-dimensional variables and

hoose a rescaling appropriate for Wi � 1.

The relevant length scales depend on elastic properties and
o have no analogue in Newtonian flows. The length scaleU0τ−
easures the relative distance travelled by particles on oppo-

γ

W

l

ig. 2. The flow profile U = y/k in non-dimensional variables. Without loss of
enerality ξ ≤ 1.

ite sides of the channel in a relaxation time. This is the most
ppropriate measure of distance in the x-direction and we take

k∗ = U0τ−k,
x∗ = x/U0τ−

or the cross-stream y-direction, liquid particles separated by
π/kWi in the vertical are separated by a wavelength 2π/k in
he horizontal after a relaxation time τ−. So we define

∗ = Wi ky.

e rescale time with τ− and so

∗
− = 1, τ∗+ = ξ = τ+

τ−
,

nd without loss of generality 0 ≤ ξ ≤ 1. The values of ω∗ and
∗ are now

ω∗ = τ−ω,
α∗± = τ−α± = −iω∗ + iy∗ + 1/τ∗±.

t is convenient to non-dimensionalize ψ by

∗ = ψk2τ− = k∗2 ψ

U2
0τ−

,

n which case the interfacial perturbation δ is rescaled to

∗ = kδ.

ote that the scaling of δ is different from that of x and y.
The pressure is rescaled by

∗ = Wi−3pτ−
μ

.

he aij are already dimensionless, but in order to ensure that the
caled variables remain O(1) as Wi → ∞ we set

a∗
11 = Wi−3a11,

a∗
12 = Wi−2a12,

a∗
22 = Wi−1a22.

he capillary number is given by Ca = U0μ/γ . We define the
imensionless surface tension coefficient by

∗ = Ca−1Wi−3.
hen Wi → ∞, γ∗ → 0 unless Ca ∼ Wi−3.
We now drop the asterisks on the variables. The dimension-

ess flow profile is then as given in Fig. 2. The dimensionless
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omentum equations (A.1) and (A.2) are now

i

[
−p+Wi−22βDψ + 1 − β

τ
a11

]

+ D

[
β(D2 +Wi−2)ψ + 1 − β

τ
a12

]
= 0, (7)

i

[
β(D2 +Wi−2)ψ + 1 − β

τ
a12

]

+ D

[
−Wi2p− 2iβDψ + 1 − β

τ
a22

]
= 0, (8)

here D denotes differentiation by y. The vorticity equation
A.3) becomes

β

(
D2 − 1

Wi2

)2

ψ + 1 − β

τ

×
[
iD
(
a11 − a22

Wi2

)
+
(

D2 + 1

Wi2

)
a12

]
= 0, (9)

here τ jumps at the interface. The constitutive equations
A.4)–(A.6) are

a11 = 2a12 + 2i(2τ2 +Wi−2)Dψ + 2τD2ψ, (10)

a12 = a22 + (2τ2 +Wi−2)ψ + D2ψ, (11)

a22 = 2τψ − 2iDψ, (12)

ith α = −iω + iy + 1/τ. The interfacial conditions (A.8)–
A.10) become

2i(1 − β)[[τ]]δ+ β[[D2ψ]] + (1 − β)
[[a12

τ

]]
= 0, (13)

[
iβD3ψ + 1 − β

τ

(
iDa12 + a22

Wı2
− a11

)]]
= γkδ, (14)

[ψ]] = 0, (15)

[Dψ]] = 0, (16)

nd the perturbed interface location is

= ψ

ω
. (17)

he no-slip boundary conditions (A.7) at the walls become

= Dψ = 0 at y = (1 −Δ)k,−Δk. (18)

he wall locations explicitly depend on k. The only other appear-

nce of the wavenumber k is in the surface tension term in
14).

Eqs. (9)–(18) define the eigenvalue problem for ω =
(k, ξ, β,Δ,Wi, γ). We are primarily interested in the large Wi

imit. Examination of Eq. (9) shows that this is a regular limit,
nd that the error is O(Wi−2). This is made explicit in Appendix
. The coefficient of surface tension γ is negligibly small at

arge Wi unless Ca = O(Wi−3).

w
T
c
o
t
h

ian Fluid Mech. 143 (2007) 71–87

.1.1. Linear perturbation equations for Wi � 1
At leading order for large Wi, the momentum equations

ecome(
−p+ 1 − β

τ
a11

)
+ D

[
βD2ψ + 1 − β

τ
a12

]
= 0, (19)

p = 0. (20)

he vorticity equation

D4ψ + 1 − β

τ
[iDa11 + D2a12] = 0 (21)

an be exactly integrated once, the constant of integration being
he x-dependent pressure gradient along the channel, and so the
ow is governed by the x-momentum Eq. (19). This reflects the
act that the relaxation length scale is large compared to the
hannel width. The constitutive equations are

a11 = 2a12 + 4iτ2Dψ + 2τD2ψ, (22)

a12 = a22 + 2τ2ψ + D2ψ, (23)

a22 = 2τψ − 2iDψ. (24)

he interfacial conditions become

2i(1 − β)[[τ]]δ+ β[[D2ψ]] + (1 − β)
[[a12

τ

]]
= 0, (25)

[
iβD3ψ + 1 − β

τ
(iDa12 − a11)

]]
= γkδ, (26)

[ψ]] = 0, (27)

[Dψ]] = 0. (28)

e keep the surface tension term for use in Section 5 where we
onsider the possibility that Ca = O(Wi−3). Elsewhere we take
= 0. The displacement of the perturbed interface is

= ψ

ω
, (29)

nd the no-slip boundary conditions at the walls remain

= Dψ = 0 at y = (1 −Δ)k,−Δk. (30)

. UCM liquids (β = 0) at high Weissenberg number

We first consider the UCM liquid neglecting surface ten-
ion (γ = 0) and using Eqs. (21)–(30). This is the simplest case
o study and has the fewest parameters. The solution for the
treamfunction ψ has the particularly simple form

(y) = C±
1 (y − ω) + C±

2 y(y − ω) + C±
3 e

(−1−i)τ±y

+C±
4 e

(1−i)τ±y, (31)

here ± denotes the solution on either side of the interface.
he coefficients must be chosen to satisfy the no-slip boundary

onditions at each wall as well as force balance and continuity
f velocity at the interface. These eight equations are linear in
he C±

i . We find ω by the requirement that the associated matrix
as determinant zero.
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.1. Asymptotic results for Wi � k � 1

When Wi � k � 1, we can calculate ω asymptotically.
The exponential terms in (31) have a length scale of order

nity, but the walls are at asymptotically large distances of order
from the interface. In consequence, for the upper liquid (y >
) the coefficient C+

4 must be exponentially small. Thus the
orresponding term must be negligible close to the interface.
imilarly, the C+

3 term is negligible close to the wall.
We now find C+

2 in terms of C+
1 . As k → ∞, the two bound-

ry conditions at the wall ψ = Dψ = 0 are satisfied by

+
1 (y − ω) + C+

2 y(y − ω) + C+
4 e

(1−i)τ+y

t y = (1 −Δ)k � 1. Some algebra shows that at leading order
n k

+
1 = k(Δ− 1)C+

2 .

similar argument gives

−
1 = kΔC−

2 .

ince k � 1, we conclude that the C±
2 are much smaller than

he C±
1 .

Applying the interfacial conditions (25)–(29) at y = 0 and
eglecting the exponentially small terms involving C−

3 and C+
4 ,

e find M v = 0 where v = [C−
1 , C

−
4 , C

+
1 , C

+
3 ]

T
and

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 2
ω2 + 2iω + ω + i

ω(ω + i)2 0 2ξ
ξ2ω2 + 2iξω

ω(ξω +
− 2

Δ
0

2ξ

Δ− 1
0

1 (1 − i) −1 (1 + i)ξ

−ω 1 ω −1

o leading order in k. The first and second rows of M arise from
he x- and y-components of the force balance while the third and
ourth rows come from the x- and y-components of continuity
f velocity.

We seek ω such that detM = 0. We replace the fourth row of
with the sum of the fourth row and ω times the third row. The

ows of the resulting matrix are linearly dependent if and only
f the first and (new) fourth rows are linearly dependent. That is,
etM = 0 if and only if detN = 0 where

=

⎛
⎜⎝2

ω2 + 2iω + ω + i

ω(ω + i)2 2ξ
ξ2ω2 + 2iξω − ξω − i

ω(ξω + i)2

1 + ω(1 − i) −1 + ωξ(1 + i)

⎞
⎟⎠ .

(33)

he combination of terms used to give the second row of N rep-
esents continuity of the material derivative of the x-component
f velocity at the interface, that is, continuity of tangential accel-
ration at the interface. The flow generated by ψ = C±

1 (y − ω)

as the property that the x-component of velocity for a mate-
ial particle does not change: the Eulerian derivative at a point
s balanced by the change in the base flow due to advection
n the y-direction. Consequently the coefficients C±

1 cancel

3

a

ian Fluid Mech. 143 (2007) 71–87 75

− i
⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (32)

xactly and do not appear in the second row of N. They sim-
larly drop out of the tangential force balance and thus do
ot affect the condition for stability. It is only the two terms
hat decay exponentially away from the interface (C−

4 and
+
3 ) that appear in the reduced pair of tangential interfacial
onditions.

After some algebra the determinant of N yields the quintic
quation:

ξ3ω5 + (ξ3 + 4iξ3 − ξ2 + 4iξ2)ω4 + (−2ξ3 − 8ξ2 − 2ξ)ω3

+ (−2ξ − iξ3 − 3iξ2 − 3iξ − i+ 2ξ2)ω2

+ (2ξ2 − 2ξ + ξ2i+ 2 − i)ω − ξ + 1 = 0. (34)

his is identical to the large Wi limit of Renardy’s result
1] which assumes the perturbations decay before reaching
he wall. This is a remarkable conclusion, for it implies that
he growth rate of the instability is unaffected by the pres-
nce of the channel walls even though the mode structure is
hanged.

The neutral stability boundary occurs when ω is real. The
nly ξ allowing realω are ξ = 1 and ξ = ξc ≈ 0.27688. Between
hese values the imaginary part of ω is positive, and below this
ange it is negative. The imaginary and real parts of the most
angerous root for ω are plotted in Fig. 3.

For ξ = 0.5, Eq. (34) gives ω ≈ −.30544 + .06603i. Thus
t large k we expect an instability with growth rate 0.06603 +
(1/k) and wavespeed −0.30544/k + O(1/k2). Both limits

re clear in Fig. 4 where we have solved the problem numer-
cally with ξ = 0.5,Δ = 0.7 for arbitrary k. For moderate k, the
rowth rate overshoots the asymptote but decreases again at large
. Fig. 5 shows the corresponding perturbation flow at k = 30
hich occupies the full width of the channel with boundary

ayers at the interface and the wall.
Our observations forWi � k � 1 can be summarized as fol-

ows: we have found an algebraic equation for ω which gives
he stability boundary in terms of ξ, the ratio of relaxation times.
he perturbation flow is of comparable magnitude throughout

he channel, with boundary layers at the walls and at the inter-
ace. The stability criterion is unaffected by the walls and can
e expressed in terms of velocities and forces that are parallel
o the interface.
.2. Stability for Wi � 1 and general k

To illustrate the stability boundary for general k, we fix ξ
nd allow Δ and k to vary. Fig. 6 shows the marginal sta-
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Fig. 3. UCM liquid. Wi � k � 1. Imaginary and real parts of ω for Eq. (34) as ξ changes. (a) Growth rate. (b) Real part of ω.
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ility curves in (k,Δ) space. For k � 1 the wavelength is
ong compared to both the channel width and the relaxation

ength scale, so this is a special case of previous long-wave
nalysis [10] with instability if Δ < 0.5. If ξ > ξc ≈ 0.28 we
ave shown there is an instability for k � 1. This is clear
n Fig. 6. For ξ < ξc, there is an unstable tongue for mod-

a
d
i

ig. 5. UCM liquids. Wi � 1. Unstable mode for ξ = 0.5, Δ = 0.7, and k = 30. T
nterface and the walls. The magnitude of the flow is comparable throughout the cha
nterface and both walls.
rom (19)–(30) compared with theWi � k � 1 asymptotic predictions (dashed)

rate k which grows as ξ → ξc, filling most of the plot for
= 0.2.

The overshoot in Fig. 4 and the unstable ‘tongues’ in Fig. 6(a)

nd (b) both show that the growth rate overshoots the large k pre-
iction when k is moderate. This suggests that the next correction
n k for k � 1 is destabilizing.

he value of ω is −0.3000 + 0.0766i. There are boundary layers close to the
nnel. (a) Streamlines. (b) Perturbed x-velocity. Note the boundary layers at the
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Fig. 6. UCM liquids. Wi � 1. Marginal stability curves in Δ-k space at fixed values of ξ. The noisy areas for large k or small Δ correspond to regions of numerical
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ifficulties. (a) ξ = 0.1. Well below ξc, short-waves are stable. There is a small u
he unstable tongue has grown much larger. (c) ξ = 0.3. Just above ξc, short-wa
s largely unchanged from ξ = 0.3.

. Oldroyd-B liquids (β > 0) for Wi � k � 1

We consider here whether theWi � k � 1 interfacial insta-
ility found for UCM liquids persists for Oldroyd-B liquids. By
he similarities of the analytic solution with that of the UCM
iquid, we are able to draw some similar conclusions about
he mechanism of instability. However, to determine the growth
ates, we find numerical methods more useful.

Because the term C1(y − ω) remains part of solution (B.3)
ven in the presence of Newtonian viscosity the remarkable con-
lusion that C1 drops out of the tangential force and tangential
cceleration condition at the interface remains valid regardless
f β. We expect thatC2 is small in order to satisfy boundary con-
itions at the wall, and so the algebraic terms disappear and the
tability is determined entirely by the two tangential conditions
n the interfacial boundary layer.

Wilson and Rallison [11] studied the k � 1 limit for Oldroyd-
liquids with moderate Wi. In this limit the perturbation flow

ecays away from the interface and the walls can be neglected.
hey showed that for sufficiently large β there is instability
or all ξ, with the growth rate tending to zero like (1 − β)3

s β increases to 1. It is known from the UCM results of
enardy [1] that for sufficiently large Wi (but still small com-
ared to k) there are values of ξ for which the flow is stable

k

a
s
h

le tongue at 10 � k � 15. (b) ξ = 0.2. Just below ξc short-waves are stable, but
re unstable and the instability persists down to k ≈ 5. (d) ξ = 0.7. The picture

f β = 0. These results suggest the existence of a critical value
f β above which all flows are unstable. Wilson and Rallison
ere able to find stability for β as large as 0.11, and pos-

ulated that this is the critical value. When Wi is larger than
, their analysis breaks down because the walls lie within the
oundary layer. Asymptotics become difficult. We have inves-
igated this using numerics instead, with the governing Eqs.
21)–(30).

Setting Δ = 0.5 we fix k = 30, 60, and 120 and follow the
rowth rate in (β, ξ) space in Fig. 7. At k = 30, there is stability
f both ξ and β are small, shown in Fig. 7(a). As k grows, the
table region increases in size and exists for β up to (at least)
.2.

In the limit β → 1, the liquids become identical Newtonian
iquids and so the growth rate tends to zero. That is, for fixed
, limβ→1�[ω] = 0. However, it is clear from the figures that
imβ→1limk→∞�[ω] = 0: the limit is singular. This is different
rom the Wi � k case in [11].

To observe the structure of the unstable mode when the liquids
re almost Newtonian, we take ξ = 0.5,Δ = 0.7, β = 0.99, and

= 2000. The perturbation flow is shown in Fig. 8. The bound-

ry layers at the wall have effectively disappeared. There are
till boundary layers close to the interface, but their structure
as changed.
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ig. 7. Growth rate contours in the (β, ξ) plane for Oldroyd-B liquids with Wi �
tability. If either ξ = 1 or β = 1, the two liquids are identical, and the growth r
greement. (a) The marginal stability curve at k = 30. (b) The growth rate at k

Our results show that the behavior of Oldroyd-B fluids
s similar to that of UCM fluids. The critical value of β at
hich stability is impossible appears to be approximately 0.2.
e have found that the β → 1 and k → ∞ limits cannot be

nterchanged.
. The effect of surface tension

Insofar as an elastic instability requires a displacement of
he interface, surface tension will be expected to suppress the

n

t

ig. 8. Unstable perturbation flow of Oldroyd-B liquid with Wi � 1, β = 0.99, ξ =
ompare with Fig. 5 where β = 0, Δ = 0.7, k = 30, and ξ = 0.5. (a) Streamlines. (b
nd Δ = 0.5 for k = 30, 60, and 120. The lower left corner is the only region of
zero. For β = 0 (UCM) the k � 1 asymptotic results from Eq. (34) are in good
(c) The growth rate at k = 60. (d) The growth rate at k = 120.

nstability, especially for large k. However, in this section we
nd that surface tension does not eliminate instabilities, and so

he mechanism of the instability does not require a perturbation
o the interface.

.1. The effect of surface tension at high Weissenberg

umber

In this section we assume that Ca ∼ Wi−3 so that surface
ension remains dynamically important at large Wi.

0.5, Δ = 0.7, and k = 2000. For these parameters ω = −0.0261 + 0.3330i.
) Perturbed x-velocity.
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ig. 9. UCM liquids. The effect of surface tension on growth rate for Wi � 1, ξ
a) 0 < k < 25. (b) 25 < k < 200.

We consider Eqs. (21)–(30), with γ = 0. In the limit kγ →
, the normal force balance (26) reduces to δ = 0. Since δ = 0,

he kinematic equation for the interface (29) becomes ψ(0) = 0
nd δ disappears from the problem. The only remaining time
erivatives are in the evolution of the stress perturbation, Eqs.
22)–(24). Thus any instability manifests itself only in the growth
f the liquid velocity and elastic stresses and not in an interfacial
erturbation.

.1.1. UCM liquids (β = 0) with nonzero surface tension
In the limit where Wi � k � 1, we have a simple analytic

epresentation of the streamfunction in both liquids, and we pro-
eed as in Section 3.1. The addition of surface tension affects
nly the second row of the matrix M in Eq. (32). This row plays
o role in the construction of N in Eq. (33), and so the linear
tability of the system is unchanged by the addition of surface
ension (although the perturbation flow is changed). The remark-
ble conclusion is that a perturbation with the same growth rate

ccurs regardless of the size of the surface tension whenever
i � k � 1.
To see the effect of surface tension at moderate k we solve the

quations numerically. In Fig. 9 we plot the growth rates with

p
m
a
e

ig. 10. UCM liquids. Perturbation flow for the same parameters as in Fig. 5: W
0.2855 − 0.0227i. As k increases it destabilizes and tends to the same growth rate
he interface is flat. (b) Perturbed x-velocity.
.3, and Δ = 0.5. For k � 1 all growth rates tend to the asymptotic limit 0.019.

= 0.3 and Δ = 0.5 for different values of the surface tension
easured by γ . The infinite surface tension (γ = ∞) curve was

alculated by replacing the normal force balance with the zero-
isplacement condition ψ(0) = 0. As expected, the growth rate
f the disturbance is everywhere reduced by the addition of sur-
ace tension. For small k the growth rates are close to the zero
urface tension limit. As k increases, they approach the infinite
urface tension limit. However as k → ∞, both zero and infi-
ite surface tension limits tend to the same (positive) growth
ate, 0.019.

In Fig. 10 we show the perturbation flow for the same param-
ters as in Fig. 5 except that the surface tension is infinite.
oundary layers exist at the interface with the same length scale
s before.

The fact that surface tension does not affect the growth
ate if Wi � k � 1 has consequences for our understand-
ng of the physical mechanism driving the k � 1 instability.
t large Wi the mechanism cannot depend on interface dis-

lacement, contradicting previous claims [9,20], instead it
ust rely on effects tangential to the interface that are not

ffected by surface tension. We do not have a physical
xplanation for the instability mechanism, but it seems depen-

i � 1, ξ = 0.5, Δ = 0.7, and k = 30, but with γ = ∞. The value of ω is
as for the zero surface tension case. (a) Streamlines at infinite surface tension.
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Fig. 11. Oldroyd-B liquids with Wi � 1. Plot of growth rates for β = 0.99 as
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changes with ξ = 0.1 and Δ = 0.5 fixed. The top curve corresponds to zero
urface tension, while the bottom curve assumes it is infinite so that the interface
emains flat.

ent on base advection of perturbed stresses combined with
elaxation.

.1.2. Oldroyd-B liquids (β > 0) with nonzero surface
ension at high Weissenberg number

We have not undertaken a complete study of parameter space
or Oldroyd-B liquids with surface tension, but because tangen-
ial effects determine the stability of Oldroyd-B liquids at large

i, we expect surface tension to have no influence at sufficiently
arge k.

In Fig. 11 we plot the growth rates for ξ = 0.1,Δ = 0.5, and
= 0.99. We see that the infinite surface tension growth rate

s positive for k � 1, and appears in this limit to approach the
ame value as for zero surface tension.

.2. The effect of surface tension for UCM liquids at

eneral Wi and k � 1

Setting Wi = O(1) and k � 1 corresponds to a disturbance
avelength that is much shorter than both the channel width

ig. 12. UCM liquids. The effect of surface tension on the large k growth rate for
oincide. (a) Growth rate contours with no surface tension. At ξ = 1 the growth rate
ends to −1 (i.e., pure relaxation) as Wi → 0.
ian Fluid Mech. 143 (2007) 71–87

nd the relaxation length. This is the standard short-wave limit,
hich has been studied in the absence of surface tension by
enardy [1] and Chen and Joseph [5].

In the presence of surface tension, Chen and Joseph [5] state
hat at sufficiently large k the flow is stable. This contrasts with
ur results at asymptotically large Wi. To explore this discrep-
ncy, we consider the effect of surface tension at finite Wi. We
rst reproduce the results of [1,5] without surface tension and

hen consider the infinite surface tension limit.
With moderate Wi in the absence of surface tension, the walls

ecome irrelevant for k � 1 and k disappears from the analysis.
he solution from (B.2) is a sum of exponentially growing and
ecaying terms. The growing terms must vanish, so the solutions
ake the form

ψ(y) = C−
1 (y − ω) exp

( y
Wi

)
+C−

4 exp

[
ξy

(
−i+

√
1 + 1

ξ2Wi2

)]
y < 0,

ψ(y) = C+
2 (y − ω) exp

(−y
Wi

)

+C+
3 exp

[
y

(
−i−

√
1 + 1

Wi2

)]
y > 0.

he interfacial conditions with zero surface tension define a
× 4 matrix. Setting the determinant to zero provides a (compli-

ated) quintic equation inω found by Renardy [1] which reduces
o Eq. (34) at large Wi. Fig. 12(a) plots the growth rate of the

ost dangerous mode in (Wi, ξ) space, equivalent to Fig. 1 of
hen and Joseph [5] and Fig. 1 of Renardy [1], but with different
xis scalings.

In the case of infinite surface tension, we replace the nor-
al force balance by ψ(0) = 0. Then the same method gives a

significantly simpler) quintic equation for ω:
([Rξ3 + ξ2Q]Wi− iξ2Q+ iRξ2)ω5

+ ([2iξ2Q+ 2iRξ3 + 2iRξ2 − ξ2 + ξ3 + 2iξQ]Wi+ 2iξ2

− 2Rξ2 + 2ξ2Q+ 2ξQ− 2Rξ)ω4

finite Wi. As Wi → ∞, the growth rates for zero and infinite surface tension
is zero. (b) growth rate contours with infinite surface tension. The growth rate
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+
(

[−2ξ2Q− iRξ2Q− 4Rξ2 − 2Rξ − iξ + iRQ− 4ξQ

+ iξ3]Wi+ 2iξ2Q− 4iRξ − 3ξ2 + 4iξQ

−3ξ − ξ3 − 2iR− 1 + i− iξ2

Wi

)
ω3 +

(
[iQ+ iRξ2

− iR− 4iRξ − iξ2Q− 2RQ+ 2RξQ− 4iξQ]Wi

− 4iξ2 − 4iξ + 4R− 4i− 4ξQ+ 2ξ − 2

Wi

)
ω2

+ ([−Rξ + 2ξQ−Q+ iξ2 + 2R− i]Wi

− iQ+ 4 + iR+ 4ξ)ω + [1 − ξ]Wi+ 2i = 0,

here Q =
√
ξ2 + 1/Wi2 and R =

√
1 + 1/Wi2. At leading

rder for Wi � 1 this also reduces to Eq. (34). On solving this
uintic for finite Wi we find a region of parameter space where the
ystem is unstable, seen in Fig. 12(b). As Wi increases, Fig. 12(a)
nd (b) become identical.

The fact that instability persists, with a growth rate of order
nity, even with infinite surface tension contradicts the con-
lusions of Chen and Joseph [5], where it is assumed that
he instability is caused by displacement of the interface. This
ssumption leads to an inappropriate ansatz that the stabilizing
ffect of surface tension on the growth rate isO(k) for k � 1, and
ence an incorrect conclusion (at large Wi) that surface tension
tabilizes the flow.

The fact that the instability exists with a flat interface fur-
her raises the possibility that the interaction between the liquid
nd the wall could also lead to an instability. However, the wall
rovides different boundary conditions, and earlier work [14]
hows that instability does not occur.

. Scalings of high Wi instabilities

Figs. 5, 8, and 10 show that the perturbation flow in the
ulk of the liquids is as large as in the boundary layer close
o the interface. In addition, we have seen that the growth
ate of the instability is independent of the position of the
alls.
This implies that the instability arises at the interface and

hat the remainder of the flow, whether in the bulk or the wall
oundary layers, has no effect on the growth rate. In this sec-
ion we offer a discussion of the scalings to explain why the
uter region is dynamically passive despite having a flow of
omparable magnitude.

.1. The UCM liquid

For clarity and simplicity we focus on the infinite surface
ension limit of the UCM liquids for whichψ = 0 at the interface
nd β = 0.
Because the wavelength is long compared with the channel
idth, the perturbation liquid velocity is parallel to the channel
alls at leading order, the liquid pressure is constant across the

hannel, and the y-component of the momentum Eq. (20) is

b
l
i
i
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utomatically satisfied. The x-component of the momentum Eq.
19) becomes

11 − iDa12 = G, (35)

here D denotes differentiation in y, G = pτ is a perturbation
ressure gradient, and aij is the perturbation to the ij component
f the stress.

The evolution of the perturbation stresses in Eqs. (22)–(24)
s controlled, through α, by the base flow advection y, growth ω,
nd relaxation τ−1. In the boundary layer at the interface y =
(1). Outside the boundary layer y = O(k). It follows that α =
iω + ik + 1/τ = O(1) in the boundary layer and thus aij ∼ ψ,

ut outside the boundary layer α = O(k) and |aij| � |ψ|.
By Eq. (35), outside the interfacial boundary layer the

ressure gradient G must be at most comparable to a11 and
12. In the boundary layer the stresses are larger and the
ressure is negligible, so Eq. (35) is a third-order ordinary
ifferential equation having three solutions. We find D ∼ 1.
ne solution grows unphysically and is discarded, leaving two

olutions whose coefficients can be chosen. The y-velocity
s zero at the interface to satisfy the infinite surface ten-
ion assumption. The x-velocity may be fixed arbitrarily, so
efining the magnitude of the perturbation. These two condi-
ions uniquely determine ψ throughout the interfacial boundary
ayer.

The solutions in the bulk are algebraic and D ∼ 1/y. At the
dge of the boundary layer, the x-velocity must be of comparable
agnitude to that in the interior of the boundary layer. The flux

f liquid in the x-direction in the boundary layer is negligible,
o to conserve mass, the bulk region must have no net flux, but
t must simultaneously match the x-velocity set by the boundary
ayer at its edge. The pressure gradient G is determined so as
o maintain zero flux in the bulk, and so the horizontal flow
hroughout the bulk region is comparable to that in the boundary
ayer.

At the wall the flow must satisfy the no-slip boundary condi-
ion. This forces the existence of a second boundary layer, where
gain D ∼ 1. There is no appreciable flux in this layer.

In this scenario there is no feedback whereby the flow in the
ulk can influence the flow in the interfacial boundary layer.
hus the growth rate is locally determined and the bulk flow is
riven by this interfacial region.

.2. The effect of β

Including Newtonian viscosity modifies the x-momentum
quation so that it becomes

11 − iDa12 − i
βτ

(1 − β)
D3ψ = G. (36)

he structure in each region begins to be affected by the β
erms when: β/(1 − β) ∼ 1 in the interfacial boundary layer,
/(1 − β) ∼ k in the bulk, and β/(1 − β) ∼ 1/k in the wall

oundary layer. Thus at sufficiently large k, the wall boundary
ayer is affected by the Newtonian viscosity, but the bulk flow
s unchanged and the interfacial boundary layer is affected only
f β is large enough. Because the bulk region is unchanged, it
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ig. 13. High Wi growth rates for Oldroyd-B liquids with β = 0.99, ξ = 0.5,
nd Δ = 0.7.

oes not feed back into the interfacial layer and so the stability
s again determined by the interfacial boundary layer.

The structure shown in Fig. 8 (β = 0.99, k = 2000) suggests
hat as β → 1 the wall boundary layer expands until it has the
ame length scale as the bulk region.

. An additional instability of Oldroyd-B liquids at high
i

The picture we have developed so far for high Wi instabilities
s incomplete. We have found (by accident) an additional insta-
ility in Oldroyd-B liquids. In this section we briefly analyze
ome of its properties.

In Fig. 13 we plot the growth rates for two unstable modes for
= 0.99, ξ = 0.5, and Δ = 0.7. As k → ∞ one of the modes

as fixed growth rate. This is the previously observed mode
iscussed in Section 4. The other mode has higher growth rate
t intermediate values of k, but stabilizes as k → ∞.

We have not studied this new mode in detail. The perturba-
ion flow for k = 200 is shown in Fig. 14. The real part of ω

as a different sign from that of the k → ∞ instability, and so
his mode travels in the opposite direction of the k → ∞ mode
elative to the interface.

2
f

ig. 14. Unstable high Wi perturbation flow of Oldroyd-B liquids with β = 0.99, ξ =
treamlines. (b) Perturbed x-velocity.
ig. 15. Sketch for ‘coextrusion’ Poiseuille flowU = U0(1 − y2/L2) in a chan-
el.

This mode stabilizes at large k, but the value of k at which
t stabilizes increases as the interface approaches the wall. This
uggests an interaction of the boundary layer at the interface
ith the wall. We have not found a similar instability in UCM
ows, but we cannot rule out such a possibility.

. Other flow profiles for the UCM liquids

We have shown that the large k instability in Couette flow
s generated by effects close to the interface, even though the

ode structure is influenced by the presence of the channel
alls. Consequently, we expect to see unstable modes having

he same growth rates for other base flow profiles whenever the
eissenberg number based on the local shear rateU ′ at the inter-

ace is sufficiently high. We demonstrate this by considering two
ases of Poiseuille flow of two liquids through a channel.

We return to dimensional variables and consider two con-
gurations. The first is symmetric three-layer Poiseuille flow (a
coextrusion flow’) as sketched in Fig. 15. We take the interfaces
o be at y = ±ΔL. The second configuration is asymmetric; it
as only two liquid layers with a single interface at y = ΔL so
hat τ = τ+ for Δ < y/L < 1 and τ = τ− for −1 < y/L < Δ.
n both cases, the base flow is U = (U(y), 0) where U(y) =
0(1 − y2/L2). The inner (lower) relaxation time is taken to
e τ− while the outer (upper) relaxation time is τ+ = ξτ−. We
When the local Weissenberg number at the interface U ′τ− =
U0Δτ−/L is large we expect to see the same growth rate as
ound for Couette flow so long as the shear rate is effectively

0.5, Δ = 0.7, and k = 200. For these parameters ω = 1.6084 + 1.0262i. (a)
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ig. 16. Coextruded UCM liquids at high Wi. Contour plots of growth rate for v
urve. For ξ > ξc there is instability at large U0τ−k holding Δ fixed, while stab
table for ξ = 0.2 if Δ � 1/(U0τ−k)1/2. (b) Short-waves unstable for ξ = 0.3 i

onstant throughout the interfacial boundary layer. That is, we
xpect similar behavior as long asU ′/U ′′ � 1/kU ′τ at the inter-
ace. When these terms are comparable, U ′′/kU ′2τ ∼ 1 and
ifferent effects are expected.
When the interfaces are far from the centerline, the linearized
quations at the interface are similar to those for Couette flow,
nd we do indeed find the same stability criteria observed previ-
usly. As shown in Fig. 16, if ξ > ξc ≈ 0.28 we find instability at

t
C
h
t

ig. 17. Coextruded UCM liquids. Perturbation flows for ξ = 0.5,Δ = 0.7, and U0τ−
ode ωτ− = 15.6208 + 0.0590i. The perturbation flow decays before reaching the w
aricose mode streamlines. (d) Varicose mode perturbed x-velocity.
se modes for symmetric Poiseuille flow. The bold line is the marginal stability
xists if ξ < ξc. The dashed lines show constant Δ(U0τ−k)1/2. (a) Short-waves

1/(U0τ−k)1/2.

arge values of U0τ−k (holdingΔ fixed), while there is stability
f ξ < ξc. Some numerical difficulties are evident in Fig. 16(b)
here both U0τ−k and Δ are large.
Although the growth rates are the same as for Couette flow,
he mode structures are not. We plot the perturbation flow for the
ouette-like instability in Figs. 17 and 18. As before, the flow
as a boundary layer close to the interface. However, the per-
urbation decays before reaching the walls, contrasting with the

k = 30. For the varicose mode ωτ− = 15.6203 + 0.0598i and for the sinuous
alls. (a) Sinuous mode streamlines. (b) Sinuous mode perturbed x-velocity. (c)
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Fig. 18. Coextruded UCM liquids. Perturbation flows with a single interface for ξ = 0.5, Δ = 0.7 with U0τ−k = 30, 500. For U0τ−k = 30, we have ωτ− =
15.6205 + 0.0594i and for U τ k = 500, ωτ = 255.3063 + .0657i. In both cases the perturbation flow decays before reaching the wall. (a) Streamlines with
U 0τ−k
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0τ−k = 30. (b) Perturbed x-velocity with U0τ−k = 30. (c) Streamlines with U

ouette flow case. Between the interface and a boundary layer
t the centerline, the flow is similar in appearance to the Cou-
tte case, but close to the centerline different effects occur. This
egion permits a return flow providing zero net mass flux with-
ut requiring a significant perturbation in the outer flow. When
= 0.5 and U0τ−k = 30, the values of ωτ− in the frame of ref-

rence of the interface are all about 0.32 + 0.06i and the value
or U0τ−k = 500 is about 0.306 + 0.066i. These are consistent
ith the result for Couette flow, ωτ− → 0.30544 + 0.06603i

s U0τ−k → ∞ (cf., Fig. 4 where the shear rate has opposite
ign).

Fig. 16 suggests that if Δ is comparable with 1/(U0τ−k)1/2,
ifferent behavior arises. This corresponds to the distinguished
imit where U ′/U ′′ has the same magnitude as 1/kU ′τ, dis-
ussed in a companion paper [21].

. Discussion

This paper has considered purely-elastic interfacial instabili-
ies of parallel shear flows of viscoelastic liquids. Previous work
n this topic has classified modes on the basis of (dimensional)
avelength and channel width into long-waves k−1 � L and
hort-waves k−1 � L, ignoring the elastic length scale U0τ.
he hidden assumption was made in previous analyses that
−1 � U0τ or k−1 � U0τ respectively. However, the analy-
is here shows that a different classification should be used:

t
s
b
n

= 500. (d) Perturbed x-velocity with U0τ−k = 500.

ong-waves for which k−1 � U0τ, L; wide-channel for which
� k−1, U0τ; and fast-flow for which U0τ � L, k−1. Under

his new classification, the distinct behaviors of short-waves at
arge and small Wi are each a special case of a more general class
hich persists even when the wavelength is long compared to

he channel width.
Because there are three length scales, it is perhaps unsurpris-

ng that the stability of waves with kL � 1 and of waves with
L � 1 cannot offer any guarantee of stability for intermedi-
te k (contrary to the assertion in [22,23]). This is evident in
ig. 16(a) for a range of Δ around 0.5, and is discussed further

n a companion paper [21].
There are two surprising features of the fast-flow instability:

he first is that the growth rate is determined entirely within a
oundary layer at the interface, even though the perturbation
ow can fill the entire channel. The second is that the instability
ersists even with asymptotically large surface tension.

We are not aware of any experiments that have observed
he high Wi instability predicted in this paper. Nevertheless, the
umerical estimates suggest that experimental parameters need
ot be extreme. For sufficiently viscous Boger liquids with a
elaxation time measured in seconds and β > 0.2, we predict

hat an instability should be observed for a shear rate of 1 s−1,
o long as the liquids do not mix. Visualizing the instability may
e difficult if surface tension is strong such that the interface is
ot significantly perturbed.
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Throughout we have assumed that the Reynolds number is
ero. This assumption is not required to observe the fast-flow
nstabilities so long as the flow is laminar. The local Reynolds
umber based on the shear rate and the thickness of the boundary
ayer will be small even if the global Reynolds number based
n the shear rate and the channel width is large. Consequently
nertia is unimportant in the boundary layer and so the instability
s expected to persist in the presence of modest inertia.

We have assumed that the interface is sharp. In general the
idth of the interface will be on the molecular scale, much

maller than any length scale considered in this paper. Under
he continuum hypothesis, it is safe to assume zero width. If the
iquids have very weak surface tension however, they may dif-
use into one another, yielding a mixed layer. If the length scale
f this mixed layer becomes comparable to the length scale of the
oundary layer governing stability, then our results must change.
arlier work at moderate Wi has shown that this blurring leads

o stability [13].
Instability occurs for infinite surface tension because the nor-

al force balance at the interface decouples from the rest of
he analysis and plays no role. This observation conflicts with a
idely-held assumption about the driving force for purely elastic

nterfacial instabilities namely [24]:

the mechanism of purely elastic interfacial instabilities has
been demonstrated to be the coupling of the jump in base
flow normal stresses across the interface and the perturbation
velocity field.

This statement may be true for many purely elastic interfacial
nstabilities and is certainly the case for long-wave instabilities.
owever, since the jump in base flow normal stress disappears

rom the analysis in the limiting case, a distinct mechanism must
e involved. Our results provide some restrictions on the stability
echanism. The stability does not depend on the details of the
ow except within a thin layer about the interface. It does not
epend on a perturbation to the interface and can occur with
nfinite surface tension. Because the mode travels relative to
he interface at leading order, the mechanism must depend on
he sign of the shear rate. We have not been able to isolate the

echanism.
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ppendix A. Linear perturbation equations
We consider the stability of the flow to infinitesimal distur-
ances. These disturbances change the velocity field U, the stress
, and in general the interface location Δ. We use lower case

etters u, σ, and δ to denote the corresponding perturbations.

w
(
[

ian Fluid Mech. 143 (2007) 71–87 85

The perturbation quantities are small and may be taken to be
roportional to exp(ikx− iωt). We take u = (Dψ,−ikψ) to sat-
sfy incompressibility automatically. ‘D’ denotes differentiation
ith respect to y.
The perturbed stress σ satisfies

= −pI + μ

(
2βe + 1 − β

τ
A
)
,

here the perturbation rate of strain is

=
(

ikDψ (D2 + k2)ψ/2

(D2 + k2)ψ/2 −ikDψ

)
.

he momentum equation ∇ ·� = 0 gives

kσ11 + Dσ12 = 0, (A.1)

kσ12 + Dσ22 = 0. (A.2)

aking the curl of the momentum equation and substituting for
we find the vorticity equation

(D2 − k2)
2
ψ + 1 − β

τ
[ikD(a11 − a22) + (D2 + k2)a12] = 0.

(A.3)

he evolution equations for a are

a11 = 2
U0

L
a12 + 2ik

(
2
U2

0τ
2

L2 + 1

)
Dψ + 2

U0τ

L
D2ψ,

(A.4)

a12 = U0

L
a22 + k2

(
2
U2

0τ
2

L2 + 1

)
ψ + D2ψ, (A.5)

a22 = 2k2U0τ

L
ψ − 2ikDψ, (A.6)

here α = −iω + ikU0y/L+ 1/τ.
The no-slip boundary conditions at the wall are

= Dψ = 0 at y = (1 −Δ)L,−ΔL. (A.7)

ontinuity of velocity at the interface y = 0 gives

[ψ]] = [[Dψ]] = 0. (A.8)

he perturbed interface lies at y = δ, and the interface normal
ecomes N + n where n = (−ikδ, 0). To linear order the inter-
acial condition [[Σ +�]] · (N + n) = γκ(N + n) becomes

2ik(1 − β)[[τ]]U2
0δ/L

2 + β[[D2ψ]] + (1 − β)
[[a12

τ

]]
= 0,

(A.9)

[
− β

D3ψ + (1 − β)
(

−Da12 + a22 − a11

)]]
= γk2

δ,
(A.10)

here we have used Eq. (A.1) to eliminate the pressure from
A.10). These equations correspond to Eqs. (15) and (16) of
11] with the addition of surface tension.
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The interface is a material surface and so (∂t + [U + u] ·
)δ = −ikψ. Thus since the base state velocity vanishes at the

nterface

= kψ

ω
, (A.11)

here ψ is evaluated at y = 0.
The Eqs. (A.3)–(A.11) define the eigenvalue problem for the

omplex growth rate ω.

ppendix B. Analytic solutions

For the UCM liquid (β = 0) Gorodtsov and Leonov [25]
xplicitly found the streamfunction ψ solving (9)–(12) by sub-
tituting for the aij in (9) and factoring the resulting differential
perator. We generalize their factorization and use this to give
he solution for arbitrary β. We record the solution and limiting
ases below for future reference.

Combining the constitutive Eqs. (10)–(12) with the vorticity
q. (9) we find(
α2D2 − 2iαD − 2 − α2

Wi2

)

×
(

[sτα+ 1]D2 + 2iτD − 2τ2 − sτα+ 1

Wi2

)
ψ = 0,

here s = β/(1 − β). This gives the explicit solution

(y) = C1(y − ω) exp
( y
Wi

)
+ C2(y − ω) exp

(
− y

Wi

)

+C3 exp
( y
Wi

)
M
(

1

s
(1+iτWi), 2

s
,

2i

Wi

(
α+ 1

sτ

))

+C4 exp
( y
Wi

)
U
(

1

s
(1+iτWi), 2

s
,

2i

Wi

(
α+ 1

sτ

))
,

(B.1)

here M and U are Kummer’s functions [26]. This solution is
quivalent to one found by Wilson et al. [15]. In practice we do
ot find this solution to be useful for our stability problem and
o we turn instead to numerics to solve the Eqs. (9)–(18) when
is nonzero.
In the β = 0 limit, the solution found by Gorodtsov and

eonov [25]

(y) = C1(y − ω) exp
( y
Wi

)
+ C2(y − ω) exp

(
− y

Wi

)

+C3 exp

[
τy

(
−i−

√
1 + 1

τ2Wi2

)]

+C4 exp

[
τy

(
−i+

√
1 + 1

τ2Wi2

)]
(B.2)
s more amenable to asymptotic analysis. From this solution we
ee that if Wi is large (but less than the dimensionless channel
idth k) there are two boundary layers, one with thickness of
rder unity and another with thickness of order Wi.

k
t
e
c
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The solution at large Wi for the Oldroyd-B liquid is

(y) = C1(y − ω) + C2y(y − ω) + C3

(
α+ 1

sτ

)(s−2/2s)

×J(s−2/s)

(
2i

√
2

(−1 − α)1/2

s

)

+C4

(
α+ 1

sτ

)(s−2/2s)

Y(s−2/s)

(
2i

√
2

(−1 − α)1/2

s

)
,

(B.3)

here J and Y are Bessel functions [26]. For a UCM liquid
β = 0) at large Wi we find

(y) = C1(y − ω) + C2y(y − ω) + C3e
(−1−i)τy + C4e

(1−i)τy.

(B.4)

he exp(±y/Wi) terms in Eq. (B.2) have been replaced by
lgebraic terms. This reflects the fact that the thickness of the
orresponding boundary layer has become large compared to
he channel width.

ppendix C. Numerical methods

In principle we can find ψ analytically, but if k is finite or
f β = 0, it is more convenient in practice to solve the problem
umerically. We use two methods which provide results consis-
ent with one another as well as with the analytic limits presented
nd which reproduce previous results.

The first method is orthogonal shooting [27,10,11]. At each
all we have two free conditions. Using an initial guess for ω
e integrate two independent solutions from the bottom wall

o the top. The boundary conditions at the top wall define a
× 2 matrix whose determinant is zero when ω is an eigen-

alue. We refine our guess for ω by Newton–Raphson iteration
nd use parameter continuation to follow the modes through
arameter space. Previous studies have used an orthogonaliza-
ion during the integration, but we have not found this to be
ecessary. Our implementation reproduces earlier results from
10–12,15]. Some numerical difficulties were encountered for
arge or small values of k as detailed below. Parameter continu-
tion sometimes finds another mode if the step in parameter is
oo large.

The second method is a spectral algorithm as in [28,29,15].
e expand the ψ and aij variables as sums of Chebyshev poly-

omials. The linear problem reduces to the form A v = iωB v

here A and B are square matrices and v is a vector containing
he coefficients of the expansions for ψ and aij . The method
orks best if all equations and variables are kept to a self-

onsistent accuracy. We keep the vorticity Eq. (9) to N terms, Eq.
10) to N + 1 terms and Eqs. (11) and (12) to N + 2 terms. We

eep ψ, a11, a12, and a22 to N + 4, N + 1, N + 2, and N + 2
erms respectively. The eigenvalues are found through Matlab’s
ig and eigs algorithms. Again we are able to repeat earlier
alculations.
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The spectral method does not need a good initial guess to find
ach eigenvalue. Further, it behaves better for large k. However, it
s computationally slower. In addition there is a continuous spec-
rum of modes where α = 0, and the spectral method requires

any polynomials to resolve modes with ω close to this line
15].

We use the spectral algorithm to find modes and then param-
ter continuation with either algorithm to follow them. Modes
isappear into (or emerge out of) the continuous spectrum [15],
o we cannot guarantee that all modes have been found though
e do find all modes predicted in the k → 0 or k → ∞ limits.

f any modes have been missed, they exist only at intermediate
avenumbers.
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